www.my-edu.ru

Шпаргалки для учеников:
 ·  БИОЛОГИЯ
 ·  ИСТОРИЯ:
 ··  Мифология
 ··  Всемирная история
 ··  Древний Восток
 ··  Античность
 ··  Средние века
 ·  МАТЕМАТИКА
 ·  РУССКАЯ ЛИТЕРАТУРА
 ·  УКРАИНСКАЯ ЛИТЕРАТУРА
 ·  УЧИТЕЛЯМ
Методические материалы для учителей:
· Администрирование школы
· Биология
· Внеклассная работа
· География
· Иностранные языки
· Информатика
· История
· Классное руководство
· Математика
· Музыка
· Начальная школа
· ОБЖ
· Общая педагогика
· Работа с родителями
· Русская литература
· Русский язык
· Социальная педагогика
· Спорт и здоровье
· Технологии
· Украинская литература
· Физика
· Экология

  Онлайн тесты по ЕГЭ


Деление клеток - основа размножения и роста организмов

  Деление клеток - процесс, лежащий в основе размножения и индивидуального развития всех живых организмов. Основную роль в делении клеток играет ядро. На окрашенных препаратах клетки содержимое ядра в состоянии покоя представлено хроматином, который различим в виде тонких тяжей (фибрилл), мелких гранул и глыбок. Основу хроматина составляют нуклеопротеины - длинные нитевидные молекулы ДНК (хроматиды), соединенные со специфическими белками-гистонами. В процессе деления ядра нуклеопротеины спирализуются, укорачиваются и становятся видны а световой микроскоп в виде компактных палочковидных хромосом. У каждой хромосомы есть первичная перетяжка (утонченный неспирализованный участок) - центромера, которая делит хромосому на два плеча.

Митоз - это непрямое деление клеток, широко распространенное в природе. Благодаря митозу обеспечивается равномерное распределение генетического материала между двумя дочерними клетками. Митоз состоит из четырех последовательных фаз. Период жизни клетки между двумя ми-готическими делениями называется интерфазой. Она в десятки раз продолжительнее митоза. В эту фазу происходит синтез молекул АТФ и белков, удваоение ДНК, удваиваются некоторые органоиды клетки.

В профазе начинается спирализация ДНК. Утолщенные и укораченные нити ДНК состоят из двух хроматид, К концу профазы ядерная мембрана и ядрышки исчезают. Центриоли клеточного центра расходятся к полюсам, формируется веретено деления.

В метафазе происходит окончательная спирализация хромосом, их центромеры располагаются по экватору, прикрепляясь к нитям веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе хромосомы раскручиваются, вокруг них образуются ядерные мембраны. В центре материнской клетки образуется перетяжка, поисходит деление цитоплазмы.

Так из одной материнской клетки образуются две дочерние. Значение митоза: обеспечивает точную передачу наследственной информации каждой из дочерних клеток.  



Митоз (от греч. mitos — нить), основной способ деления клеток эукариот (непрямое деление).

У всех живых организмов увеличение числа клеток происходит только в результате деления уже существующих клеток. Происходит это только после удвоения всего генетического материала клетки в синтетическом периоде интерфазы. Деление всех эукариотических клеток сопровождается конденсацией, т. е. резким уплотнением хроматина хромосом. Плотные компактные хромосомы распределяются между двумя дочерними клетками специальным аппаратом — веретеном деления, построенным из микротрубочек. Такой тип деления клеток называется митозом (микротрубочки внешне напоминают нити, откуда и название). При этом происходят два события: расхождение предварительно удвоенных хромосом и разделение тела клетки надвое, цитотомия.

Морфология митотического аппарата

Митотический аппарат, обеспечивающий расхождение хромосом к полюсам клетки, имеет общее строение у всех эукариотических клеток, начиная с дрожжей и кончая млекопитающими. Особенно хорошо он бывает выражен в метафазе митоза, когда хромосомы располагаются в экваториальной части клетки, т. е. на равном удалении от обоих полюсов деления. Митотическое веретено состоит из одиночных микротрубочек или их пучков. Начинаются они от полюсов веретена и часть из них прикрепляется к специальным структурам на теле хромосом — кинетохорам, это кинетохорные микротрубочки. Другие проходят дальше к противоположному полюсу, однако никогда не доходя до него — это межполюсные микротрубочки. Третий вид микротрубочек — астральные — радиально отходят от полюсов, образуя вокруг них «лучистое сияние». У разных групп живых организмов встречаются два типа митотического веретена: астральный и анастральный. Астральный тип веретена имеет в своих полюсах небольшие зоны схождения микротрубочек — центросомы, содержащие по паре центриолей. Для такого типа веретена характерно также наличие астральных микротрубочек. Обычно подобным образом митотическое веретено устроено в клетках животных.

Анастральный тип построения митотического веретена, характерный для высших растений, не имеет на полюсах звездчатых зон из астральных микротрубочек. Полярные области веретена здесь широкие, их называют полярными шапочками и они не содержат центриолей. Микротрубочки отходят здесь не от одной точки, а расходятся широким фронтом.

Описанные два типа митотической фигуры встречаются у эукариот наиболее часто. Иные формы митоза, иногда наблюдающиеся у некоторых организмов, имеют сходную с описанной принципиальную схему строения митотического аппарата.

Кинетохор

Кинетохоры — специальные белковые структуры, располагающиеся в зонах центромер хромосом. Это сложные комплексы, имеющие сходное строение у всех организмов. Морфологически кинетохоры имеют вид трехслойных пластинок или дисков, связанных с хроматином хромосом в центромерном районе. На каждую хроматиду обычно приходится по одному кинетохору, причем до анафазы они располагаются оппозитно, связываясь каждый со своим пучком микротрубочек, идущим к противоположным полюсам деления. К кинетохору может подходить от 1, как у дрожжей, до 20-40 микротрубочек, как у высших организмов. В состав кинетохоров входят как белки связывающиеся с микротрубочками, так и обеспечивающие связь кинетохора с определенными районами ДНК, расположенными в центромерных районах хромосом. Кроме того там обнаружены белки — моторы, участвующие в движении хромосом и белки, ответственные за спаривание сестринских хроматид и их расхождение в анафазе.

Динамика митоза

У клеток, вступивших в цикл деления, фаза собственно митоза занимает относителено короткое время, около 0,1 общего времени клеточного цикла. Например, весь клеточный цикл эпителиальных клеток кишечника мыши длится 20-22 часа, а на митоз приходится всего около 1 часа. Процесс митотического деления клеток принято подразделять на несколько основных фаз: профазу, прометафазу, метафазу, анафазу, телофазу. Установить точные границы между этими фазами очень трудно, потому что сам митоз представляет собой непрерывный процесс, и смена фаз идет постепенно, так что одна из них незаметно переходит в другую. Единственная фаза, которая имеет четко определяемое начало, это анафаза — начало движения хромосом к полюсам. Длительность отдельных фаз митоза различна, наиболее короткая по времени — анафаза, она может длиться всего несколько минут.

Профаза

Абсолютно точно определить наступление профазы невозможно. Морфологическим критерием для этой фазы митоза может служить появление в ядрах нитчатых структур- митотических хромосом. Конденсация хромосом в профазном ядре совпадает с резким уменьшением транскрипционной активности хроматина, которая полностью исчезает к середине профазы. В связи с падением синтеза РНК и конденсацией хроматина происходит инактивация и ядрышковых генов. При этом отдельные фибриллярные центры сливаются, превращаясь в ядрышкообразующие участки хромосом- ядрышковые организаторы. Происходит фосфорилирование (т. е. присоединение к ним фосфатных остатков) белков ламины и ядерной, оболочки, при этом теряется ее связь с хромосомами. Затем ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают. Активируются клеточные центры. В начале профазы разбираются микротрубочки в цитоплазме и начинается бурный рост множества астральных микротрубочек вокруг каждой из удвоившихся диплосом. Скорость роста микротрубочек в профазе почти в 2 раза выше скорости роста интерфазных микротрубочек, но лабильность их в 5-10 раз выше цитоплазматических. В профазе одновременно с разборкой цитоплазматических микротрубочек можно видеть дезорганизацию эндоплазматического ретикулума (он распадается на мелкие вакуоли, лежащие по периферии клетки) и аппарата Гольджи, который теряет свою околоядерную локализацию, распадается на отдельные диктиосомы.

Прометафаза

В начале прометафазы митотические хромосомы лежат в зоне бывшего ядра без особого порядка. Затем начинается их перемещение, которое в конечном итоге приведет к образованию экваториальной хромосомной «пластинки», к упорядоченному расположению хромосом в центральной части веретена уже в метафазе. В прометафазе наблюдается постоянное движение хромосом при котором они то приближаются к полюсам, то уходят от них к центру веретена, пока не займут среднее положение, характерное для метафазы. На живых клетках удалось наблюдать, что отдельные одиночные отходящие от полюсов микротрубочки случайно достигают одного из кинетохоров хромосомы и связываются с ним. После этого хромосомы быстро, со скоростью около 25 мкм/мин, скользят вдоль микротрубочки по направлению к ее минус-концу. Это приводит к тому, что хромосома приближается к полюсу, от которого произошла эта микротрубочка. Во время движения хромосомы микротрубочки не разбираются. Вероятнее всего, за такое быстрое перемещение хромосом отвечает моторный белок, аналогичный цитоплазматическому динеину, обнаруженному в короне кинетохора. В нормальных условиях хромосомы совершают, таким образом, небольшие перемещения в сторону то одного, то другого полюса. Эти колебательные движения приводят к тому, что они в конце концов оказываются в экваториальной плоскости клетки, образуя так называемую метафазную пластинку.

Метафаза

Во время метафазы хромосомы располагаются так, что их кинетохоры обращены к противоположным полюсам. В это время число межполюсных микротрубочек достигает максимума. Если на метафазную клетку посмотреть со стороны полюса, можно видеть, что центромерные участки хромосом обращены к центру веретена, а плечи — к периферии. Такое расположение хромосом носит название «материнской звезды» и характерно для клеток животных. У растений часто в метафазе хромосомы лежат в экваториальной плоскости веретена без строгого порядка. К концу метафазы завершается процес обособления друг от друга сестринских хроматид. Их плечи лежат параллельно друг другу, между ними хорошо видна их разделяющая щель. Последним местом, где контакт между хроматидами сохраняется, является центромера; вплоть до самого конца метафазы хроматиды во всех хромосомах остаются связанными в центромерных участках.

Анафаза

В анафазе все хромосомы вдруг теряют центромерные связки, сестринские хроматиды разделяются и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам клетки. Скорость движения хромосом равномерная, она может достигать 0,5-2 мкм/мин. Анафаза — самая короткая стадия митоза, но за это время происходит целый ряд событий. Главными из них являются сегрегация (т. е. разделение) двух идентичных наборов хромосом и транспорт их в противоположные концы клетки. При движении хромосом они меняют свою ориентацию и часто принимают V-образную форму. Вершина их направлена в сторону полюсов деления, а плечи как бы откинуты к центру веретена. Если перед анафазой произошел разрыв плеча хромосомы, то во время анафазы оно не будет участвовать в движении хромосом и останется в центральной зоне. Такие наблюдения показали, что именно центромерный участок вместе с кинетохором отвечает каким-то образом за движение хромосомы. Создается впечатление, что за центромеру хромосома оттягивается к полюсу. Собственно расхождение хромосом слагается из двух процессов: 1) расхождение за счет кинетохорных пучков микротрубочек, 2) расхождение вместе с полюсами за счет удлинения межполюсных микротрубочек. Первый из процессов носит название «анафаза А», второй — «анафаза В».

Во время анафазы А, когда группы хромосом начинают двигаться по направлению к полюсам, кинетохорные пучки микротрубочек укорачиваются. Можно было ожидать, что в этом случае деполимеризация микротрубочек должна происходить на их минус-концах, т. е. концах, ближайших к полюсу. Однако было доказано, что микротрубочки действительно разбираются, но только с плюс-концов, возле кинетохоров, и хромосомы движутся к полюсам деления. Оказалось, что такое движение хромосом зависит от присутствия АТФ и от наличия достаточной концентрации ионов Са. То, что в составе короны кинетохоров, в которую вмонтированы плюс-концы микротрубочек, обнаружен динеин, позволило считать, что именно этот белок является мотором, который подтягивает хромосому к полюсу.

После остановки хромосом у полюсов происходит их дополнительное расхождение за счет удаления полюсов друг от друга (анафаза B). Показано, что при этом наращиваются плюс-концы межполюсных микротрубочек.

Последовательность анафаз А и В и их вклад в процесс расхождения хромосом может быть различным у разных объектов. Так, у млекопитающих стадия А и В протекает практически одновременно. У простейших анафаза В может приводить к 15-кратному увеличению длины веретена. В растительных клетках стадия В отсутствует.

Телофаза

Началом телофазы можно считать момент остановки хромосом, а заканчивается она реконструкцией нового интерфазного ядра (ранний G1-период) и разделением исходной клетки на две дочерние (цитокинезом).

В ранней телофазе хромосомы, не меняя ориентации, начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы начинает строиться новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек. В телофазе начинается и заканчивается процесс разрушения митотического аппарата. Он идет от полюсов к экватору бывшей клетки: именно в средней части веретена микротрубочки сохраняются дольше всего (остаточное тельце).

Главное событие телофазы — разделение клеточного тела — цитотомия, или цитокинез. Выше уже говорилось, что у растений деление клетки происходит путем внутриклеточного образования клеточной перегородки, а у клеток животных — путем перетяжки, впячивания плазматической мембраны внутрь клетки.

В. В. Бураков

В начало страницы





Дополнительная информация